
8088 Corruption
Motion Video on a 1981 IBM PC with CGA

Introduction

• 8088 Corruption plays video that:

• Is Full-motion (30fps)

• Is Full-screen

• In Color

• With synchronized audio

…on a 1981 IBM PC with CGA
(and a Sound Blaster for audio)

Introduction – So What?

• 1981 IBM PC w/CGA has:

• 4.77MHz 16-bit processor

• 512KB RAM (typically)

• 16 fixed ugly colors

• Motion video should not be possible given

these constraints

8088 Corruption In Action
(demonstration)

History

• Started as a dare

• Collaboration with Sandor Tojzan

• Pilgrimage 2004

• Won Wild Compo

• Scene Awards 2004

• Nominated “Most Original Concept”

• 2700+ “diggs”; Diggnation (2006)

The Thought Process

How did you do this?

• Define the problem

• Write program that displays full-motion video on

low-resource hardware (1981 IBM PC)

• Research output device

• What is technically possible?

• Research input device

• What looks best?

• Input + output = list of specifications

The Input Device

• Human brain is a pattern recognition engine

• Works better with frequency than amplitude

• Example:

16KHz 1-bit speech is intelligible;

1KHz 16-bit speech is not.

(even though both take up the same bandwidth)

• Same concept extends to human visual

system

Frequency vs. Amplitude

24-bit color

2.5 frames per second

1-bit color

60 frames per second

Both videos use the same bandwidth,

but only one can be considered

“motion-quality” video

What Looks Best?

• Empirical testing

• Took full-motion video (60 images per second)

and created 30, 20, 15, 12, 10, and 6 frames-

per-second (FPS) versions of the same video

• Result #1: 30 FPS minimum acceptable

motion quality

The Input Device: Audio

• Empirical testing

• Took source audio at 44KHz sampling rate and

created 32, 22, 16, and 11KHz rate versions

• Result #2: 22KHz minimum acceptable

quality for music

The Output Device

• CGA displays whatever is stored in its

framebuffer (adapter RAM)

• Maximum speed we can update that RAM

dictates how fast we can change the display

• Empirical testing

• Wrote assembly-language routine that measured

how fast CPU can copy system RAM to CGA
adapter RAM (“REP MOVSW”)

• Result #3: CPU can move 160KB of data to

CGA per second

Discovery

• Calculation:

• Moving data to CGA RAM tops out at 160KB/s

• 30 FPS minimum quality

• Audio takes up 22KB/s

• (160-22) / 30 = 4.6

• Result #4: 4.6KB maximum amount of RAM

we can copy each frame to stay within our

30 FPS target

The Output Device

• What are our options?

• CGA graphics modes use 16KB;

16KB > 4.6KB, so not an option

• 80x25 text mode uses 4KB;

however, 80x25 text mode produces “snow”

when writing to adapter RAM (demonstration)

• 40x25 text mode uses 2KB;

no problems writing to adapter RAM

• Final Result: We must use 40x25 text mode!

The Converter

Three iterations:

1. Resolution-centric (naïve approach)

2. Color-centric (halftoning)

3. Brute-force resampled compare (final)

1st Converter: Resolution-Centric

• First idea: Emulate “character graphics”

• 40x25 text mode uses 8x8 character cells

• Only two colors allowed per 8x8 cell

(foreground and background text colors)

• Effective “graphics” resolution: 320x200

• Similar to ZX Spectrum graphics, except that

each pixel is not individually addressable

Character Graphics Example

Each 8x8 cell has

a foreground and

background color,

and user-defined

font data

1st Converter: Naïve Approach

• 320x200 image broken up into 8x8 “cells”

• For each cell:

• Remap colors using the CGA 16-color palette

• Determine two most popular colors

• Remap cell again using just those two colors

• Compare to all 512 character/color

combinations; best character match used

• IBM character set contains graphics

characters – should work, right?

1st Converter Results

1st Converter: Results

• Pros

• Some details were “perfect” matches

• Cons

• Largely flat incorrect colors; some picture detail lost

“Perfect” matches to the

forward-slash (“/”) character

2nd Converter: Halftoning

• Dithering; trades spatial resolution for color

resolution

• IBM character set includes a 50% pattern

character, #177 (looks like “checkerboard”)

• 50% pattern a crude form of dithering

• 136 unique “colors” possible by mixing

colors and using #177

Halftoning in CGA

#176 #177 #178 #219

CGA text font data contains a few

shaded graphical characters; #177, a

50% pattern, is what we want

By using all 16 CGA

colors (and removing

duplicate combinations),

we can simulate up to

136 different colors

using #177

2nd Converter: Halftoning

• 320x200 picture resampled to 40x25

• For each pixel:

• Compare to all 136 “color” combinations

• Use the closest match

2nd Converter Results

2nd Converter: Results

• Pros

• Colors much better

• Less memory requirements

(text character is always #177, so only color

data needs to be stored)

• Conversion process very fast (136-entry lookup

table)

• Cons

• Most detail lost

3rd Converter: Resampled Compares

• How to get results that are “halfway”

between the first two attempts?

• “Half” led to the idea of resampling both

the picture and the character/color

combinations smaller and performing

comparisons at that level

3rd Converter: Resampled Compares

• 320x200 picture resampled to 160x100 (half

vertical/horizontal)

• Divided up into 4x4 “cells”

• Compare each “cell” against every

character/color combination also resampled

half vertical/horizontal

• Use the closest match

3rd Converter Results

3rd Converter: Results

• Pros

• Detail, color preserved very well

• Cons

• Conversion process extremely slow (seconds per

frame)

•(4*4)(16*16*256)(40*25)=1,048,576,000

comparisons per frame (nearly 230)

• Actual encoder contains some MMX assembler and

algorithm optimizations, but still pretty slow

Why did this work best?

• 50% “checkerboard” character (#177), when

resampled 50% smaller, better matches solid color

areas in the resampled source image

Bilinear resize

50% smaller

Why did this work best?

• Individual characters can still “match” because

both picture and character set resampled by same

amount

“Perfect” matches to the

forward-slash (“/”) character

Choosing Source Material

• Just as important as the converter!

• Visual cortex works best with familiar

patterns

• Faces; human movement (like walking/dancing)

• Be mindful of converter limitations

• Avoid complicated backgrounds, tiny details,

subtle color gradiations

• Pop culture references

• A little social engineering never hurts 

Choosing Source Material
Example

The Player

• Fills memory queue with A/V data

• Starts playback

• Main code tries to keep queue full

• At desired framerate frequency, interrupt

code pulls A/V data and sends it to CGA

framebuffer and sound card audio buffer

• If queue can’t stay filled (slow hard disk),

main code pauses playback until queue is

full again

How is A/V sync maintained?

• Data stored in A/V “chunks”; each chunk

includes video and audio data for the frame

• To get the right timing, we set the sound

card’s audio buffer to the size of one audio

chunk (for example, 22050 / 30 = 735 bytes)

• When sound card requests (via IRQ) the next

audio chunk, we update CGA RAM at the

same time

• Essentially, the sound card drives the

entire system

Comparisons

• ANSI Animation

• Existing Video CODECs

• aalib and libcaca

ANSI Animation

• Nothing in common with ANSI other than the

character set and colors

• Doesn’t use ANSI.SYS in any way

• ANSI Art is painstakingly crafted by artists; 8088

Corruption is a brute-force conversion

• Artists almost always produce better results

Existing Video CODECs

• 8088 Corruption could be considered a

Vector Quantization CODEC that uses a

fixed codebook (the CGA ROM FONT + all

color permutations)

• Not really a CODEC

• There is no decompression on playback

• Didn’t start with CODEC and work forwards

(traditional porting) but instead started with

PC’s limitations and worked backward

• Better term: Transcoding

aalib, libcaca, libggi (monotext)

• C libraries that convert graphics into text

• Real-time conversion

• Each input pixel -> output character

• Terminal-agnostic; actual text font data not used

during the conversion

Improvement

• Everything can be improved!

• Player

• Video processing

• Actual compression

• Full framerate

Player improvement

• Video updates happen at any time, resulting

in shearing. Since system timer tick is free,

we can use it to simulate vertical retrace

interrupt to implement page flipping.

• EMS support could be added to reduce

rebuffering

Video pre-processing

• Subtle variations in the source causes colors to

“snap” between two close matches due to CGA’s

limited color selection

• Pre-processing source video for temporal noise

greatly reduces “sparkle”

Actual Compression

• If pre-processing video for temporal noise,

50% or less of the image changes between

frames with typical material

• If tests show that partial frame updates can
be done as fast or faster than REP MOVSW,

actual compression can be achieved

• Benefit: Less demand on hard disk

subsystem

The Holy Grail: 60Hz Screen Updates

• Updating the screen at CGA’s full 60Hz

opens up new possibilities

• Technically possible, but with caveats:

• CPU spends more time updating A/V buffers

than it has time to load A/V data from disk

• End result = rebuffering impossible to avoid 

The Holy Grail: 60Hz Screen Updates

• Possible ways to avoid rebuffering

• Pre-process video to get actual compression

(less demand on hard disk)

• Cache entire video to EMS (“cheating”)

• Read multiple A/V chunks at a time (in theory)

• Use BIOS sector reads to bypass DOS’ double-

buffering

• Drive HD controller directly to use DMA (not

portable!)

60Hz Motion

• 60Hz close to the limit of brain’s ability to

discern individual events in time

• End result: Eerily realistic motion

60Hz Motion
Demonstration

30Hz Dither Across Time

• If we keep track of match errors, we can

distribute errors forward in time to the next frame

• 60Hz display rate is fast enough that frames

“blend” together, producing additional colors to

the human eye

Existing converter Sample of “time-dithered” converter

30Hz Enhanced Vertical Resolution

• CGA can be tweaked to provide 40x50 mode

• Each tweaked “character” is only the top

8x4 pixels of a character

• No additional resolution, but gain somewhat

more flexibility in choosing best matches

Lessons Learned

• Know your output device

• Having a goal makes it interesting, engaging

• For low-resource platforms, focus on specs to

work backward from, over ideas to work

forward to

• Know your input device

• Know your audience

• Experiment

• Challenge yourself

• Stupid ideas are the most fun to work on 

Additional Examples
Demonstration

Additional Resources and Q&A

• trixter@oldskool.org

• http://www.oldskool.org/pc/8088_Corruption

• Downloads, source code

• Any questions?

mailto:trixter@oldskool.org
http://www.oldskool.org/pc/8088_Corruption

