8088 Corruption

Motion Video on a 1981 IBM PC with CGA

1I ].I ].l D 1| D 1| D 1101030201011101.000016

0010000%02001010020P1010000210LL0L00L0L0L0 DLLLLLDLDU%LDLDDLLLLD 0001001011 L0L00L0

110101010

IDL%DLDLD DDLLLULDD%DLDDL

1101000010000%040010100100%0L0000%40 LDLDULE;!LCJDDLJLLLDLUDLDLDL



Introduction

e 8088 Corruption plays video that:
e s Full-motion (30fps)
e Is Full-screen
e In Color
e With synchronized audio

...on a 1981 IBM PC with CGA

(and a Sound Blaster for audio)



Introduction - So What?

e 1981 IBM PC w/CGA has:
e 4,77MHz 16-bit processor
e 512KB RAM (typically)
e 16 fixed ugly colors

e Motion video should not be possible given
these constraints



8088 Corruption In Action

(demonstration)

IDLqULULD nnmmmumuu%mxunl 111010010

0010000%02001010020P1010000210LL0L00L0L0L0 DLLLLLDLDDﬁLDLDDLLLLD 0001001011 L0L00L0
LLLLLLLLL 0h11,0100001000010300101001001010000300,2010010101000033111010010101



History

e Started as a dare
e Collaboration with Sandor Tojzan
e Pilgrimage 2004

« Won Wild Compo

e Scene Awards 2004
« Nominated “Most Original Concept”

e 2700+ “diggs”; Diggnation (2006)



The Thought Process

How did you do this?

e Define the problem

e Write program that displays full-motion video on
low-resource hardware (1981 IBM PC)

e Research output device
e What is technically possible?

e Research input device
e What looks best?

e Input + output = list of specifications



The Input Device

« Human brain is a pattern recognition engine

e Works better with frequency than amplitude

e Example:
16KHz 1-bit speech is intelligible;
1KHz 16-bit speech is not.
(even though both take up the same bandwidth)

e Same concept extends to human visual
system



Frequency vs. Amplitude

”~ 4 ?

z F

24-bit color | 1-bit color

2.5 frames per second | 60 frames per second

Both videos use the same bandwidth,
but only one can be considered
“motion-quality” video 7 &

| L



What Looks Best?

e Empirical testing
e Took full-motion video (60 images per second)
and created 30, 20, 15, 12, 10, and 6 frames-
per-second (FPS) versions of the same video
e Result #1: 30 FPS minimum acceptable
motion quality




The Input Device: Audio

e Empirical testing

e Took source audio at 44KHz sampling rate and
created 32, 22, 16, and 11KHz rate versions

e Result #2: 22KHz minimum acceptable
quality for music




The Output Device

o CGA displays whatever is stored in its
framebuffer (adapter RAM)

e Maximum speed we can update that RAM
dictates how fast we can change the display

e Empirical testing

 Wrote assembly-language routine that measured

how fast CPU can copy system RAM to CGA
adapter RAM (“REP MOVSW”)

e Result #3: CPU can move 160KB of data to
CGA per second




Discovery

e Calculation:
e Moving data to CGA RAM tops out at 160KB/s
e 30 FPS minimum quality
e Audio takes up 22KB/s
e (160-22) / 30 = 4.6
e Result #4: 4.6KB maximum amount of RAM

we can copy each frame to stay within our
30 FPS target




The Output Device

 What are our options?

e CGA graphics modes use 16KB;
16KB > 4.6KB, so not an option

o 80x25 text mode uses 4KB;
however, 80x25 text mode produces “snow”
when writing to adapter RAM (demonstration)

e 40x25 text mode uses 2KB;
no problems writing to adapter RAM

e Final Result: We must use 40x25 text mode!

—



The Converter

Three iterations:
1. Resolution-centric (naive approach)
2. Color-centric (halftoning)
3. Brute-force resampled compare (final)



1st Converter: Resolution-Centric

e First idea: Emulate “character graphics”
e 40x25 text mode uses 8x8 character cells

e Only two colors allowed per 8x8 cell
(foreground and background text colors)

o Effective “graphics” resolution: 320x200

e Similar to ZX Spectrum graphics, except that
each pixel is not individually addressable



Character Graphics Example

EEE —
L

Ty rei:ﬁi:ﬂ'?gi-tﬁm:ﬁ’ﬁ‘ mw‘z“'ﬂ.‘h

e R L T
& A e et

Each 8x8 cell has
a foreground and
background color,
and user-defined
font data

. YIRGIH
©1990: MASTERTRONIG

? cConversion: DESTON
j 280 coding: %

il
e BT P | T
L VR A )
T %y gy LK

LT
.-




15t Converter: Nailve Approach

e 320x200 image broken up into 8x8 “cells”

e For each cell:
« Remap colors using the CGA 16-color palette
e Determine two most popular colors
« Remap cell again using just those two colors

« Compare to all 512 character/color
combinations; best character match used

e IBM character set contains graphics
characters - should work, right?



1st Converter Results




1st Converter: Results

e Pros
e Some details were “perfect” matches

e Cons
o Largely flat incorrect colors; some picture detail lost

“Perfect” matches to the
forward-slash (“/”) character




2"d Converter: Halftoning

e Dithering; trades spatial resolution for color
resolution

e IBM character set includes a 50% pattern
character, #177 (looks like “checkerboard”)

e 50% pattern a crude form of dithering

e 136 unique “colors” possible by mixing
colors and using #177



Halftoning in CGA

CGA text font data contains a few
shaded graphical characters; #177, a
50% pattern, is what we want

#176 #1/7 #1/8 #219

By using all 16 CGA
colors (and removing
duplicate combinations),
we can simulate up to
136 different colors
using #177




2"d Converter: Halftoning

e 320x200 picture resampled to 40x25

e For each pixel:
« Compare to all 136 “color” combinations
e Use the closest match



2"d Converter Results




2" Converter: Results

e Pros
e Colors much better

e Less memory requirements
(text character is always #177, so only color
data needs to be stored)

e Conversion process very fast (136-entry lookup
table)

e CONs
e Most detail lost



3rd Converter: Resampled Compares

e How to get results that are “halfway”
between the first two attempts?

e “Half” led to the idea of resampling both
the picture and the character/color
combinations smaller and performing
comparisons at that level




3"d Converter: Resampled Compares

e 320x200 picture resampled to 160x100 (half
vertical/horizontal)

e Divided up into 4x4 “cells”

« Compare each “cell” against every
character/color combination also resampled
half vertical/horizontal

e Use the closest match




3rd Converter Results




3rd Converter: Results

e Pros
e Detail, color preserved very well

e Cons

e Conversion process extremely slow (seconds per
frame)
« (4*%4) (16*16*256) (40*25)=1,048,576,000
comparisons per frame (nearly 239)

e Actual encoder contains some MMX assembler and
algorithm optimizations, but still pretty slow



Why did this work best?

e 50% “checkerboard” character (#177), when
resampled 50% smaller, better matches solid color
areas in the resampled source image




Why did this work best?

 Individual characters can still “match” because
both picture and character set resampled by same
amount

“Perfect” matches to the
forward-slash (“/”) character




Choosing Source Material

« Just as important as the converter!

e Visual cortex works best with familiar
patterns

e Faces; human movement (like walking/dancing)

e Be mindful of converter limitations

e Avoid complicated backgrounds, tiny details,
subtle color gradiations

e Pop culture references
e A little social engineering never hurts ©

—

‘]‘il



Choosing Source Material

Example

nnlqnlnlu 00111 DLDD%DLDDL 111010010

0010000%02001010020P1010000210LL0L00L0L0L0 DLLLLLDLDD#LDLDDLLLLD 0001001011 L0L00L0

1101010101001101L000010000040010100100L0L0000%40 LDLDULE;'.'LIIJDDL)JLLLDLDDLDLDL



The Player

 Fills memory queue with A/V data
e Starts playback
e Main code tries to keep queue full

e At desired framerate frequency, interrupt
code pulls A/V data and sends it to CGA
framebuffer and sound card audio buffer

e If queue can’t stay filled (slow hard disk),
main code pauses playback until queue is
full again



How is A/V sync maintained?

o Data stored in A/V “chunks”; each chunk
includes video and audio data for the frame

e To get the right timing, we set the sound
card’s audio buffer to the size of one audio
chunk (for example, 22050 / 30 = 735 bytes)

« When sound card requests (via IRQ) the next
audio chunk, we update CGA RAM at the
same time

o Essentially, the sound card drives the
entire system



Comparisons

e ANSI Animation
e Existing Video CODECs
e aalib and libcaca



ANSI| Animation

e Nothing in common with ANSI other than the
character set and colors

e Doesn’t use ANSI.SYS in any way

o ANSI Art is painstakingly crafted by artists; 8088
Corruption is a brute-force conversion

e Artists almost always produce better results



Existing Video CODECs

e 8088 Corruption could be considered a
Vector Quantization CODEC that uses a

fixed codebook (the CGA ROM FONT + all
color permutations)

e Not really a CODEC

e There is no decompression on playback

e Didn’t start with CODEC and work forwards
(traditional porting) but instead started with
PC’s limitations and worked backward

e Better term: Transcoding



aalib, libcaca, libggi (monotext)

e C libraries that convert graphics into text
o Real-time conversion
e Each input pixel -> output character

e Terminal-agnostic; actual text font data not used
during the conversion

: 1 00
1 I
i i o 0010 : E
(] 0(] %8 00U W10 : e 8
QOO0 | 44 0aQ 0 i g+ 2HI] ] 1% prepeeern s 8 A
10000000000 : 0<#HO : atosncioleBens
0000 ' 1 " Hit 14 18 El:]:]-:ii!f
00 2 D#L I E : 8
Q! 1480 :00 1
8000 1 10 n0 i
Q00 000 00
Q00
0] 1 QU030
Q00
(00 ! 4
00 1 i
o ; 1 19Unsns
HLIL] ! /e - "IHH#H
DX | o[ i 43
! 0 o Qudii
Q%X0 I 0 . Yy
0 ab I
3 1X¥q ] d000 1 0004
3 ! TV [ Qw1 09YUI0
; o q—4 OT 1Z%V00
QLI 1 00
B0 4| : i




Improvement

e Everything can be improved!
e Player
 Video processing
e Actual compression
e Full framerate



Player improvement

e Video updates happen at any time, resulting
in shearing. Since system timer tick is free,
we can use it to simulate vertical retrace
interrupt to implement page flipping.

e EMS support could be added to reduce
rebuffering



Video pre-processing

e Subtle variations in the source causes colors to

“snap” between two close matches due to CGA’s
limited color selection

e Pre-processing source video for temporal noise
greatly reduces “sparkle”




Actual Compression

e If pre-processing video for temporal noise,
50% or less of the image changes between
frames with typical material

o If tests show that partial frame updates can
be done as fast or faster than REP MOVSW,

actual compression can be achieved

e Benefit: Less demand on hard disk
subsystem



The Holy Grail: 60Hz Screen Updates

e Updating the screen at CGA’s full 60Hz
opens up new possibilities
e Technically possible, but with caveats:

e CPU spends more time updating A/V buffers
than it has time to load A/V data from disk

e End result = rebuffering impossible to avoid ®



The Holy Grail: 60Hz Screen Updates

e Possible ways to avoid rebuffering

e Pre-process video to get actual compression
(less demand on hard disk)

e Cache entire video to EMS (“cheating”)
« Read multiple A/V chunks at a time (in theory)

e Use BIOS sector reads to bypass DOS’ double-
ouffering

e Drive HD controller directly to use DMA (not
portable!)




60Hz Motion

e 60Hz close to the limit of brain’s ability to
discern individual events in time

e End result: Eerily realistic motion



60Hz Motion

Demonstration

o0xo000%020020200200201000020102,0020201000021111010030102002111010000L00101%1L0L00L0

110101010140012101000010000%040010100100L010000240 LDLDDLEl."i.l.JDDLJLLLDLDULDLUL

IDL#DLDLD‘DDLLL umuu%mmnnl T T



30Hz Dither Across Time

e |If we keep track of match errors, we can
distribute errors forward in time to the next frame

e 60Hz display rate is fast enough that frames
“blend” together, producing additional colors to

the human eye




30Hz Enhanced Vertical Resolution

e CGA can be tweaked to provide 40x50 mode

e Each tweaked “character” is only the top
8x4 pixels of a character

e No additional resolution, but gain somewhat
more flexibility in choosing best matches



Lessons Learned

e Know your output device
e Having a goal makes it interesting, engaging

e For low-resource platforms, focus on specs to
work backward from, over ideas to work
forward to

e Know your input device
e Know your audience
e Experiment
e Challenge yourself
o Stupid ideas are the most fun to work on-@& /

‘]‘il



Additional Examples

Demonstration

0010000%02001010020P0101000020LL000201010000212110100 LDLDDLLLLD DDDLDDLDLL 010010
LLLLLLLLL 0100 0 001010010101 090023111010010101

nnlqnlnlu 00111 DLDD%DLDDL 111010010



Additional Resources and Q&A

e trixter@oldskool.org

e http://www.oldskool.org/pc/8088_ Corruption
e Downloads, source code

e Any questions?



mailto:trixter@oldskool.org
http://www.oldskool.org/pc/8088_Corruption

